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FOREWORD

The work described herein was performed by the Mathematical Statistics Staff (K106),
Space and Surface Systems Division, Strategic Systems Department. It was motivated by a
request from Mr. Donald R. Monn of the Weapons Systems Department to design and
analyze a projectile seating distance (PSD) experiment. The authors wish to acknowledge
several stimulating discussions with Mr. Monn regarding the application of weighted poly-
nomial regression to the PSD experiment. The date of completion was September 1981.

This report was reviewed by Mr. Carlton W. Duke, Head, Space and Surface Systems
Division.

Released by:

OLIVER F. BRAXTON, Head
Strategic Systems Department
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INTRODUCTION

Polynomial regression is a methodology used to fit curvilinear models to a set of obser-
vations. These curvilinear models fit into the framework of the general linear model and, hence,
can usually be fit to the data using any general multiple regression program. Two such programs
are currently available through the Mathematical Statistics Staff, viz. GEMREG (GEneral
Multiple ~ REGession)* and DA-MRCA (DAhlgren Multiple Regression and Correlation
Analysis).** Both provide least squares estimates of the regression coefficients, analysis of
variance tebles, and a variety of user-controlled options. These programs hinge on the assumptions
that the error terms (differences between the observed and predicted values of the dependent
variable) can be assumed to have zero expectation, the same variance for all observations, and
zero correlation. When these last two assumptions for the error terms are not met, the usual
least squares method is not applicable; instead, a weighted least squares procedure is required.

Programs WEPOR and WEPOR2 (WEighted POlynomial Regression) use this weighted least
squares procedure to estimate regression coefficients for models with one independent variable.
Program WEPOR handles the case in which the error terms have different variances but are
uncorrelated, whereas WEPOR2 deals with the problen: of different variances and correlated
error terms. Output for both programs includes ANOVA (ANalysis Of VAriance) tables, pre-
dicted values of the dependent variable and the associated residuals, and confidence limits for
selected synthetic points. The values for bounds on the entire curve generated from the input
data are written on output files for use with DISSPLA (Display Integrated Software System and
Plotting LAnguage).! An example of a program that uses the output from WEPOR and
DISSPLA features to plot sample points, the regression curve, and confidence and prediction
limits is program LIMITS.

*Taub, A. E,, and M. A, Thomas, GEMREG - A General Multiple Regression Program, NSWC TN 81-298, (Dahlgren, Va., 1981).

**Abt, K., G. Gemmill, T. Herring, and R. Shade, DA-MRCA: A Fortran IV Program for Multiple Linear Regression, NSWC
TR-2035, (Dahlgren, Va., 1966).

TIntegrated Software Systems Corporation (ISSCO), Display Integrated Software System and Plotting Language, 1SSCO (San
Diego, Calif., 1970).



THE MODEL

The polynomial regression model with a single variable has form
y; =B, +B,X. +5, Xi2+...+ﬁkX§<+ei, i 1.2 . il (1)

In this model, X; is the value of the independent variable associated with the ith response value
(yi), n is the number of observations, k is the order of the polynomial, ﬁ‘j is the jth regression
coefficient, and e is the ith random error. The inclusion of e in the model accounts for the
fact that the response variable y is a random variable and, hence, the relationship between the
response variable and the independent variable is not an exact functional relationship.

Polynomial models fit into the framework of the general linear model

y; =B, t 61 X1i 8 Xys vt ﬁkai te, i=12,..n 2)
and, hence, can usually be fit to data using any general multiple regression program provided
that the e, can be assumed to have zero expectation, the same variance o2 for all i, and be
uncorrelated. These assumptions can be expressed in a more compact form if the model is
written in matrix notation:

y = XE +e. 3)
In the general context of model (2), yisann x 1 vector of observations, isa (k + 1) x 1

vector of regression coefficients,g is an n x | vector of random errors, and

— —

DXy Xy 0 Xy

I X, X5, =00 X

X = | . . c
nx(k+1) g C

k2

I X, X a v = X

In 2n kn




Since model (1) is a special case of model (2), the appropriate X for (1) is obtained by
letting in = Xf. In this notation, the expectation of the e, and their variance-covariance
matrix can be denoted by E(e) and Var(e) respectively. Hence, if the e, are assumed to have
zero expectation, this is denoted by E(e) = 0 Also if the e are assumed to be uncorrelated
with the same variance, this is denoted by Var(e) 0?1 where I is the n x n identity matrix.
In regressicn applications, the assumption E(e) = O does not present any difficulty. However,
the assumption Var(e) = 021 cannot always be met and, hence, poses a serious problem if not
handled properly. In this case, the variance-covariance matrix is denoted by Var(e) o*V
where V is an n x n positive definite matrix.

An example of a regression application where Var(e) # ¢2I involves regressing projectile
seating distances (y) on given barrel life (x) expressed in_percent expended. Here, the variation
in seating distance increases with the percent expended barrel life. Hence, the assumption of
equal variances does not hold, and the usual least squares regression is not applicable. Cases of
this kind aad more complicated situations where the errors are correlated can be handled by a
modified least squares procedure known as weighted least squares. This procedure is discussed
by Draper and Smith,* and much of the development that follows is based on their discussion.

When the aforementioned assumptions are satisified, the usual least squares pro-
cedure provides a vector of estimates of the regression coefficients that has the form

A
B=b=XXr! Xly. 4)

The weighted least squares procedure amounts to transforming the dependent or response
variable y to another variable that does satisfy the assumptions. The usual (unweighted) least
squares analysis is then applied to the new variable, and the estimates so obtained are reex press-
ed in terms of the original variable y. This process is examined in details in the ensuing para-
graphs.

Consider the original model (Equation 3) with assumptions E(e) 0 and Var(e) = kY
(vice ¢%I). Since V is positive definite, it is possible to find an upper tnangular matrix P such
that P'P = V. (Draper and Smith indicate that it is possible to find a unique nonsingular
symmetric matrix P such that P'P = PP = P2 = V. We have not found this to be the case, nor is
such a requirement necessary in what follows.)

*Draper, N. R. and H. Smith, Applied Regression Analysis (New York, N.Y.: John Wiley & Sons, Inc., 1966), pp. 77-81.
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If the model in Equation 3 is premultiplied by (P')"!, a new model is generated in the

form
EYyly=@y! Xg+@)'e (5)
Since
E[®) el = @)y E@©=®)Y!0=0
and
Var [(P')"1e] = E[(P')"! ee’' P71] = (P')™! E(c ¢)P"!
=pP'y! v P! o2
=B @RI gt
2

= Jo*,

the new model meets the assumptions required for the ordinary least squares procedure. This
new model can be written in matrix notation as

z=Qp+f (6)

where z = (P’ y, Q= (P)! X, and f = (P'y ! e.



THE ANALYSIS

The error term f in the revised model in Equation 6 satisfies the assumptions for the usual
least squares analysis. Therefore, the usual analysis will be applied to the revised model
Estimatior. of the regression coefficients will be dealt with first. These estimates are obtained

by writing the solution vector in Equation 4 in terms of the new parameters in Equation 6.
This provides

b=QQ ' Qz (7)
Reexpressing Q and z in terms of the original model parameters provides

b= IX'PHP) ! )17 X'PHP) ! y)

=X @Py! X]7! X(P'Py !y
=X wx) ! ¥ Wy . (8)
In this exrression, W is the inverse of V;ie., W= (P'P)"! = V-1,

This solution has the same form as Equation 4, except for the insertion of W, the weighting
matrix. The new model has an implied zero intercept, since the Q matrix does not have a
leading column of ones. Hence, the entries in the analysis of variance table for the new model
are computed in a slightly different manner from those obtained when ordinary least squares
procedures are used. Table 1 shows the breakdown of the degrees of freedom and formulae
needed to compute the sums of squares for a first degree polynomial.



Table 1. Analysis of Variance Table for First Degree Polynomial

Source Sums of Squares Degrees of Freedom
2 2
B, (2(q,); z)*/2(q,); 1
B, 1B, b’X'Wy - SS(,) 1
Error ¥ Wy - b'’X'Wy n-2
Total y'Wy (=2’ 2) n

In this table, (q,), is the ith element of the first column in the Q matrix [Q = (P))™1 X].

When several observations are taken at the same level of the independent variable, the
error sum of squares in Table 1 can be broken into components for lack of fit and pure error.
From Equations 5 and 6, we have

2= @ty
where z' = (2,25, - zn). A change in the subscript of the z’s produces

! ]
z = (zll, Zigs e zlnl, Zyq s Z2n2’ e s & o ank)

where the first n, values are associated with the first level of the independent variable, the next

n, values are associated with the second level, and so on. With this notation, the sum of squares

for pure error is computed by

k nj
88 (pe) = 3
i= j=1

i=l j

_o 2
(zij Zi)

i=1 | j=1 Y )

K
with degrees of freedom v =3 n, - k.

i=1

Ch



The sum of squares for lack of fit can then be obtained by subtraction; i.e.,
SS(If) = SSE - SS(pe)
where SSE is the error sums of squares from Table 1.

Confidence limits on the expected value of y and prediction limits on the mean of m future
observations of y differ only slightly in weighted regression from unweighted regression. The value
of the independent variable X used in forming the limits is referred to as the synthetic point.
Letting x* denote the synthetic point associated with X and (x*)' = (1, x*, (x*¥)2, ... (x®)X) for
a kth degree polynomial, B

P 2 k
(§*) B= b+ blx* + b2 x*)*+ ...+ bk(x*)

is a point estimate of the expected value of y and of a single future observation when X = x*.
In the unweighted case, the 100(1 - @) percent confidence limits on E(y) when X = x* are

XDt j_ayp [P (XX)1x*)]% (10)

In the weighted case, X'X is replaced with X' WX yielding
R bt §_gp [S2((x*) (XWX) ! x®)]% (11)
In these expressions, B o= /2 is the 100 (1 - «/2) percentage point for a t distribution with v
degree of freedom where v is associated with the error mean square in the analysis of variance
table. This error mean square is denoted by s above and is obtained by dividing the error sums

of squares (SSE) by v, the associated degrees of freedom; i.e., s> = SSE/v.

The prediction limits for the mean of m future observations at X = x* is, in the un-
weighted :case, given by

1 1
(xX*)' bxt, a4 [SP(= +&H (X'X)! x*)]% . (12)
—_— —_— 3 m —_— —
For the weighted case, X'X is changed as above yielding

1 )
OGN D26, 1aj PO+ @ KWK x9)%. (3)



PROGRAM ORGANIZATION

Program WEPOR is actually the main driving routine that calls a series of first level
subroutines to perform various tasks.

First, subroutine IOP is called to read in parameters for user-specified input and output
options, viz., a title for the execution, the number of observations, the desired degree of the
polynomial model to be fit to the data, and a parameter specifying whether or not confidence
and prediction limits are requested. The printing of these limits requires the further input
of the number of future observations on which the prediction limits are based, and the number
of synthetic points to be read in if the levels of x to be used for the limits are different from
those in the original data. The validity of each parameter is checked and, should inconsistencies
be detected, either a default value is substituted or an error message printed and execution
halted.

Subroutine READIN is called to read in the raw input data and the array of weights
corresponding to the diagional elements of the matrix W = V~! (recall that program WEPOR
assumes uncorrelated error terms; should correlations exist, program WEPOR?2 should be used
and the entire matrix V is read in at this point). The required matrix P, where (P'P)"1 =W, is
computed at this time. If V is a diagonal matrix, the elements of P! are calculated by simply
taking the square root of the corresponding elements of W. In the case where V is non-
diagonal, P is obtained by performing a matrix decomposition on V using the square root
method. The total sum of squares and sum of squares due to pure error are also computed. The
raw data points are saved on TAPE10.

For each stage of development in the model, subroutine REGRESS is called to compute
and print a set of regression coefficients, the additional sum of squares to be included in the
regression sum of squares, and the residual sum of squares and F statistic for the current model.

Subroutine TABLE prints two analysis of variance tables: one shows the breakdown of
the residual sum of squares into components of pure error and lack of fit and the other table
shows the contribution made by each term in the model to the overall regression sum of
squares. This subroutine also prints the raw input data, estimated values for the dependent
variable, and residuals.

if the user has requested confidence and prediction limits, subroutine SYNTH performs
the necessary calculations. If the user has specified that a new set of levels for X, are to be used
instead of those from the original data set, these new levels are read in from the input file.
The confidence and prediction limits are printed and are also saved on TAPEI11 and TAPE12,
respectively.



Some of these first level subroutines reference routines found in the NSWC/DL Library of
Mathematics Subroutines:* CROUT, which inverts general real matrices, and MPROD and
TMPROD, which perform matrix multiplication operations. Routine QSORT from the User’s
Guide for the CDC 6700 Computing System** is used to arrange the levels of the independent
variable in ascending order. Subroutine FINDT, used to estimate the critical t value for con-
fidence and prediction units, is adapted from a similar routine in program GEMREG.T

EXAMPLE

For the application of projectile seating distance (psd) expressed as a function of percent
gun barrel life expended, the following independent and uncorrelated pairs of data points were
used to derive a first degree polynomial.

Percent Barrel Life psd
Expended (m)
0 39.82
0 = On|
10 41.13
10 41.10
30 43.52
30 43.90
60 48.05
60 46.31
75 47.23
75 48.68

Although the weight associated with each level of the independent variable is the inverse
of the variance for the response variable at that level, these variances are unknowns. Estimates
based on the above data and data from previous experiments were used to construct the follow-
ing weights:

*Morrison, Alfred H. Jr., NSWC/DL Library of Mathematics Subroutines, NSWC TR 81410 (Dahlgren, Va., 1981).
**User’s Guide for the CDC 6700 Computing System, NSWC TR-3228 (Dahlgzen, Va., 1974).

TTaub, A. E. and M. A, Thomas, 1981.



Value of Independent

Variable Weight
0 12.50
10 10.00
30 5.00
60 1.40
75 1.25

Appendix A provides the input guide for execution of programs WEPOR and WEPOR2.
The actual cards used for this example are shown in Appendix B.

Computation of the estimates for the regression parameters requires Equation 8:
b=X'WX)"! X'Wy

where

F12.5 0 . . I ” . . 0
0 12.5

o O O
DN |

. . 10.0 .
10. : : . 100 . . : . : .
30.|, W= . . . . 5.0 . . . . . ’
30. . : 5 . . 5.0 .

60. . . . . A

60. . ! . . 1 a . 14 .
75. : = . . T . . 1.25

o) L0 - . . . . . . . 132

Il
—_— e e e e e e e

[y

[39.82 ]
39.71
41.13
41.10
43.52
and y = | 43.90
a 48.05
46.31
47.23
48.68
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The following matrix operations are required before proceeding:

X'WX) = 60.30 855.50
855.50 35142.50

X'wxy!= 25X 1072 -6.1X1074]*
-6.2X107% 435X 10°°
X'Wy) =| 2505.521-
B 38253.80

Recall that there exists a matrix P such that (P'P)~! =W. The vectorz = (P')"! y is then
computed

r\/m 0 . 0 ] 3082] (14078

0 V123 . r B . . . . 39.71 140.40

V100 2 B B . E ) 41.13 130.06

! v10o . . . 3 & . 41.10 129.97

z = | : : V50 .. . . 4352 = | 9732
. V5.0 . = ) ) 43.90 98.16

vida .. . 48.05 57.43

V14 . . 46.31 55.35

| . . . ANV125 . 47.23 52.80

| 0 ) ) . - B . . \/Tz_i _48.68_ |_54'43J

* For the sake cf clarity, rounded values will be given for the results of matrix operations.

11



Similarly, the vector g, which is equal to the first column in the Q matrix (= (P! X), is
found to be

L
to
W

J

—)
e B B
| O

*FEEEES

The vector of estimates for the regression parameters, vector b, is therefore equal to

o1 ot 39.88
b= XWXy XWy =" "

This result is found on the first page of the printout (Appendix B, page B-4). For the analysis

of variance tables printed on pages two and three of the printout (pages B-4, B-5), the follow-
ing operations are performed:

SSR = E' 0.4 Wy) = 104424.89

10 10
SS (8,) = (Y (q,), )/ Y (q)7 = 104106.35
i=1 i=1

SS (8,18,) = SSR - SS@8,) = 318.54
SS Total=X'WX= _Z'E = 104431.63

SSE = SS Total - SSR = 6.74

12



Since zach level of the independent variable has two observations associated with it, Equa-
tion 9 for computing the sum of squares due to pure error can be written as

5
SS(pe) = 320 ¥ (z;-z)’
i=1

2
=1
and is found to be 3.87. Finally,
SS(1f) = SSE - SS(pe) = 2.87.

Page two of the printout (page B-4) shows the analysis of the variance table, including a
breakdown of the error sum of squares into the sum of squares due to pure error and lack of
fit. The associated degrees of freedom and mean squares are printed for the regression and error
terms.

The F statistic to test the lack of fit component [F = MS(1f)/MS(pe)] is 1.23. This result
is less thau 5.41, the critical F value for « = 0.05 with degrees of freedom 3 and 5, and
indicates tkat the first degree polynomial model chosen is not inadequate at the 0.05 level.

On the third page of the printout (page B-5) is an analysis of variance table that shows
the contribution made by each term in the model. The sum of squares due to regression is
determined for polynominals of degree from O (8, only in model) to the full model chosen. At
each stage, the additional sum of squares is computed and stored for use in this table.

The sum of squares represented by X**O is that associated with the regression model
having only B, in it [SS(8 )]. In our example, this value is 104106.35. The nth sum of squares

listed, X**2, represents the additional sum of squares obtained by adding B, to the model
that already contains B,» B; - B,_; and can be computed as follows:

SS@, 18,5 By> By - By_y) = SS@,, By» . B.) = SSB,., By, - B,_,) -
In this example,
SS(8,16,) = SS(8,, 8,) - SS(8,)
or 318.54 = 104424.89 - 104106.35.

The column with the heading “F Statistics - MSR/MSE” shows the values of the F test for
the model =t each stage of development.

13



The fourth page of the printout lists the case numbers, values X; of the independent
variable, observed values Y; of the dependent variable, the estimated values y for the de-
pendent variable based on the full regression equation, and the residuals y = ¥ (page B-5).

As in this example, the error terms were presumed to be uncorrelated, which indicates a
diagonal covariance matrix V. Therefore, only the array of weights read in as part of the input
and representing the diagonal elements of W = V™! are printed with their associated cases. If
the error terms had not been assumed to be uncorrelated, the lower triangular position of W
would also have been printed.

The minimum and maximum absolute residuals (min ly, - ;I and max ly; - yil) are also
provided.

The user has the option of requesting confidence limits at the 100y percent level, where
1-v is specified by the user. These limits may be placed about the estimated values y, for the
original levels of X or for up to 100 other synthetic points.

At the same time, 100y percent prediction limits, based on the predicted mean of m new
observations at the same levels of X as used for the confidence limits may be requested. The
value of m is also user provided. Pages five and six of the printout show 95-percent confidence
and prediction limits using the original input values for the levels of X. The prediction limits
are based on the predicted value of a single future observation at each level of X.

14



APPENDIX A

INPUT GUIDE FOR WEPOR AND WEPOR2



Input Guide for WEPOR and WEPOR?2

Card No. Variable Description
1 ITITLE Title for run
2 NOBS Number of observations

NOBS > 0 data on cards
NOBS < 0 data on TAPES (Must
be attached prior to execution)

WEPOR: 2< | NOBS | < 750
WEPOR2: 2 < | NOBS| < | 100

KMAX Desired degree of polynomial model
COPT Confidence/prediction limit option

COPT = 0 no intervals
=1 confidence intervals only

= 2 confidence and prediction intervals

Default: O

)

NPTS Number of synthetic points for
(used only if confidence/prediction limits
COPT =1,2) NPTS = 0 use original X, values

NPTS < 100
AR AR = (1 - v) for 100y percent limits

0< AR 1.0
Default: 0.05

Columns Format
1-80 8A10
1-5 15
6-10 15

11-15 15
1-5 15
6-10 F5.2



Card No. Variable Description Columns Format

M Number of future observations 10-15 15
prediction limits based on
Default: 1
4 FORMI1 Format used to read in (x,y) pairs 1-80 8AI10
5 X Independent variable level FORMI1
Y Dependent variable observation FORMI1

(Repeat Card 5 as needed)
6 FORM2 Format used to read in “weights” 1-80 8A10

7 WEPOR:W  Array of weights (diagonal FORM?2
elements of W =V~ 1)

WEPOR?2:V Covariance matrix FORM?2
(Repeat Card 7 as needed)
8 XPTS Synthetic points - - levels of FORMI1
(used only if independent variable

COPT=1,2
and NPTS > 0)

A4



APPENDIX B

SAMPLE INPUT AND OUTPUT FOR WEPOR AND WEPOR2
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APPENDIX C

SAMPLE PLOTS PRODUCED BY PROGRAM LIMITS



Program LIMITS uses the graphics package DISSPLA (Reference 3 in text) to plot the
confidence and prediction limits generated by programs WEPOR and WEPOR?2. Local files
produced by these two programs and used as input for LIMITS are TAPE10 (raw data), TAPE11
(confidence limits), and TAPE12 (prediction limits). Figures C-1 and C-2 were drawn using the
results of the example discussed on page 9.
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Figure C-1. 95-Percent Confidence Limits: Projectile Seating Distance Expressed as a Function of
Percent Gun Barrel Life Expended
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Figure C-20. 95-Percent,Prediction Limits: Projectile Seating Distance Expressed as a Function
of Percent Gun Barrel Life Expended
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